

Extending Problem Frames Projections to Support Subproblems as Services

Charles B. Haley, Robin C. Laney, Bashar Nuseibeh
Department of Computing

The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

{C.B.Haley, R.C.Laney, B.A.Nuseibeh}@open.ac.uk

Abstract

Subproblems in a problem frames decomposition
frequently make use of projections of the complete
problem context. One specific use of projections occurs
when one subproblem wishes to interact with the machine
in a projection that represents another subproblem.
Representing the projection, called a service in this
paper, as a special connection domain within the using
subproblem provides a significant benefit: an interface
that defines the shared phenomena and specifies how the
subproblems are to be composed. An extension to projec-
tions is proposed that realizes this benefit. The usefulness
of the extension is validated using a case study.

1. Introduction

Problem frames [5, 6] are used to decompose a larger
problem into a set of smaller ones. The process continues
until the smaller problems each fit into an understood
problem category, or problem frame. The resulting
individual subproblems are analyzed, and then the results
are recomposed into a solution for the original problem.

It is normally the case that solutions to subproblems do
not use all of the domains in the problem context. It is
also possible that a subproblem’s solution does not need
all of the phenomena used/controlled by the domains.
Keeping subproblems clear and focused requires a
mechanism for limiting the context of the subproblem to
the domains and phenomena necessary to solve the
problem. Context projections are used for this purpose.

Context projections in problem frames (discussed at
length in [6] and briefly but more formally in [4]) are
very similar to projections in relational databases [1]. A
projection of a relational database table is a new table
containing a (potentially improper) subset of columns,
and a projection of a problem context is a new context
containing a subset of the domains in the problem. The

context of a subproblem is a projection of the context of
the problem, limiting the domains and/or phenomena in
the subproblem to those needed to solve the subproblem.

Some problems push the analyst to consider using the
solution of some subproblem usedSP as a causal domain
(a projection) in the solution of some other subproblem
userSP. The fact that usedSP is a causal domain in userSP
is important; it means that phenomena on usedSP’s
interfaces affect the behavior of userSP, usedSP, or both.

Figure 1 presents an example, a heating control system
that measures air & water temperatures to anticipate the
correct water temperature required to maintain the room
at the desired temperature. Maintain Room Temp, the
userSP, uses a projection to represent Operate Boiler
Safely, the usedSP, to supply water at the needed
temperature. Maintain Room Temp does not care how the
furnace is controlled. It wants heated water, and sends the
heatTo(temp) phenomenon to Operate Boiler Safely to
accomplish that goal.

The interactions in the example illustrate a specific

Figure 1. Heat control system as subproblems

Subproblem 1 (usedSP): Operate Boiler Safely

Subproblem 2 (userSP): Maintain Room Temp

Machine
Maintain Room
Temperature

Room Air
Temp C

a

Machine

Boiler C

Pump C

Operate
Boiler
Safely

Water
Temp C

a

b

A: M!{start,stop}
 B!flameLevel()
b: WT!temp()
c: M!{start,stop}
 P!isRunning c

b

a: M!heatTo(Temp)
 OB!waterTemp
b: RA!airTemp()
c: OA!airTemp

“Operate Boiler
Safely” subproblem

Outside Air
Temp C

c

C

form of decomposition. Instead of controlling one of the
causal domains in Operate Boiler Safely, Maintain Room
Temp wishes to control the subproblem’s machine. When
such a machine-to-machine interface occurs, we say that
userSP is using usedSP as a service. In the example,
Maintain Room Temp is using Operate Boiler Safely as a
service to supply heated water.

There are two difficulties with the use of projections as
services as shown in Figure 1. The first difficulty is that
no domain in the projection of Operate Boiler Safely
receives the phenomenon heatTo(). The only choice for a
domain to be controlled by the phenomenon is the
machine in Operate Boiler Safely, but there is no interface
in the subproblem with which the machine can share the
phenomenon. The end result is that the two subproblems
are incompletely specified and will not compose.

The second difficulty is control of visibility. Nothing
indicates which phenomena in Operate Boiler Safely
should be visible to Maintain Room Temp. The
phenomenon waterTemp() is passed to Maintain Room
Temp, but is it the only one? Maintain Room Temp can in
theory control any phenomena used in Operate Boiler
Safely, which implies that Maintain Room Temp could
directly (and probably incorrectly) control the boiler.

The extension to projections proposed in this paper
resolves both of these difficulties. The extension is
validated using a case study: the decomposition of a
lighting control system. The case study is an expanded
version of the example in [3]1. The case study investigates
the use of context projections as services by exploring
certain difficulties such as concurrency and security. It is
not intended to provide a finished analysis.

The remainder of this paper is structured as follows.
Section 2 describes the proposed extension to problems
frames notation. Section 3 begins the case study,
presenting a requirements statement for a lighting control
system. Section 4 presents the context diagram for the
problem. Section 5 explores decomposing the problem
using projection domains. Section 6 examines
recomposition, section 7 looks at specific concerns raised
by the decomposition, and section 8 concludes.

2. Projections as Connection Domains

As noted above, an analyst may wish to solve
subproblem userSP by using subproblem usedSP as a
service. The two difficulties described above must be
resolved: which domains in usedSP receive phenomena
controlled in userSP, and which phenomena controlled by
domains in usedSP are visible outside its projection.

1 Although developed independently, the scenario resembles one
found in [8]. The major differences are multiple control interfaces,
incorporation of security requirements, and dynamic definition of
‘rooms’ for control purposes.

2.1. Solution Using Projections of the Machine

We first look at how one might approach solving the
problem using two projections of the machine in the
userSP subproblem. One projection is userSP’s machine;
it represents the machine and phenomena necessary to
solve the userSP subproblem. The other projection
represents the machine in usedSP along with the subset of
phenomena exchanged between the userSP and the
usedSP subproblem. Figure 2 presents the heat control
example redone in this style. Subproblem two, Maintain
Room Temp, now contains a causal domain that is a
projection representing the Operate Boiler Safely
machine. It also contains the Water Temp causal domain.
The phenomenon heatTo() is controlled by the Maintain
Room Temp machine. The phenomenon temp() is
controlled by the Water Temp domain.

This solution resolves our first difficulty. The
interfaces are completely specified in both subproblems.
This being said, the solution is not ideal. Nothing in the
solution of Operate Boiler Safely indicates that it might be
controlled externally. Someone looking at the
subproblem would not know why the subproblem exists.
In addition, the Maintain Room Temp subproblem
assumes that the phenomena on the interface between the
two machines are valid, but no information on either
subproblem diagram permits the assumption to be
verified. The second difficulty (visibility) is not resolved.

The next section presents an alternate solution that
better resolves the difficulties.

Figure 2. Heat system w/machine projections
Subproblem 2: Maintain Room Temp

MRT
Machine

Maintain Room
Temperature

Room Air
Temp

C

a

b

a: M!heatTo(temp)
b: RA!airTemp()
c: OA!airTemp
d: WT!temp(temp)

Projection of OBS
machine

Outside Air
Temp

C

c

C

Subproblem 1: Operate Boiler Safely

OBS
Machine

Boiler C

Pump C

Operate
Boiler
Safely

Water
Temp

C

a

b

a: M!{start,stop}
 B!flameLevel()
b: WT!temp()
c: M!{start,stop}
 P!isRunning

c

Water
Temp

C

d

2.2. Solution Using Explicit Connection Domains

The two difficulties from Section 1 can be better
resolved by inserting a connection pseudo-domain into
both projections, making the connections between userSP
and usedSP explicit and symmetric. The inserted domain
is a pseudo-domain because it is fictitious, not
representing something physical in the problem. It is a
connection domain because it represents the point
through which the world connects to the domains in the
projection. The inserted pseudo-domain represents the
projection in subproblems that use the projection. The
pseudo-domains are referred to as projection domains.

To better support validation, we propose a strict defini-
tion/reference relationship between the one subproblem
that defines the service and subproblem(s) that reference
the service. A defining occurrence is a projection domain
in the subproblem that provides the service (Operate
Boiler Safely in Figure 1), and acts as a causal domain
within the subproblem. The phenomena on its interfaces
are the phenomena available to the service, specifying the
phenomena controlled by the service and available to
subproblems that use the service, and the phenomena the
service is willing to respond to.

When a subproblem uses the service, the subproblem
will contain a referencing occurrence projection domain.
The referencing occurrence acts as a causal domain
within the using subproblem. Completeness must be
preserved: all phenomena appearing on an interface of the
referencing occurrence must appear on an interface of the
defining occurrence (or be declared somehow as optional,
a possibility not further discussed in this paper), and vice
versa. Directionality must be preserved: all phenomena
controlled by the referencing occurrence must be con-
trolled by a domain on one of the defining occurrence’s
interfaces, and all phenomena used by the referencing

occurrence must be controlled by the defining occurrence.
Figure 3 illustrates the use of projection domains. The

example contains a common ‘consumer’ subproblem used
as a service by two ‘producer’ subproblems. Producer
subproblem one monitors the temperature of some liquid.
Producer subproblem two monitors the depth of the
liquid. If the values go beyond a limit, the ‘consumer’
subproblem (subproblem three – the service) is used to
notify the staff by sounding a siren and printing
something. Subproblems one and two contain referencing
occurrences. Subproblem three contains the defining
occurrence. The phenomenon Notify is used by the
referencing occurrences and controlled by the defining
occurrence, preserving completeness and directionality. A
defining occurrence is indicated on a problem frame
diagram by a projection domain with type D (Defining);
the name must be unique across the set of subproblems. A
referencing occurrence is indicated by a projection
domain with type R (Referencing).

Figure 4 presents the heating control example again,
this time using projection domains. A defining occurrence
is added to subproblem one, Operate Boiler Safely. The
defining occurrence, Operate Boiler, controls the heatTo
phenomenon on the interface between it and the machine.
The waterTemp phenomenon is on the interface between
the defining occurrence and the Water Temp domain.
Subproblem two, Maintain Room Temp, contains a refer-
encing occurrence standing for the boiler operation ser-
vice. The referencing occurrence is named Operate Boiler
to connect it by name with the defining occurrence. The
referencing occurrence has the same phenomena on its
interface as the defining occurrence, preserving complete-

Figure 4. Heat system with projection domains

Subproblem 1: Operate Boiler Safely

Machine

Boiler C

Pump C

Operate
Boiler
Safely

Water
Temp C

a

b

a: M!{start,stop}
 B!flameLevel()
b: WT!temp()
c: M!{start,stop}
 P!isRunning
d: OB!heatTo(temp)
e: WT!temp(temp)

c

Subproblem 2: Maintain Room Temp

Machine
Maintain Room
Temperature

Room Air
Temp

C

a

b

a: M!heatTo(temp)
 OB!temp(temp)
b: RA!airTemp()
c: OA!airTemp

Operate Boiler

Outside Air
Temp

C

c

Operate
Boiler D

d

e

R

Defining occurrence
 Referencing occurrence

Figure 3. Example of projection domains

Machine

Temp C Depth C

Machine
Monitor
Temp

Monitor
Depth

Notify R Notify R

a b

Phenomena at labels:
a: M!Notify(“temp”, T, tMax) b: M!Notify(“depth”, D, dMax)
c: N!Notify(service, V, vMax)

Machine

Notify D

Siren C Printer C

Notify
Staff

c

Subproblem 1 Subproblem 2

Subproblem 3

Defining occurrence

Referencing
occurrences

ness. The referencing occurrence controls the waterTemp
phenomenon and uses the heatTo phenomenon, thus
preserving directionality.

The use of projection domains satisfactorily resolves
both the difficulties listed in Section 1. As in the first
solution, all interfaces are completely specified. However,
projection domains do not exhibit the problems found in
the first solution. They exist in both the using and used
subproblems, assisting an analyst with understanding the
solution, and they permit a basic level of correctness
verification. The second difficulty is resolved because all
the phenomena that a referencing occurrence can use
must be found on an interface on the defining occurrence.

In closing, note that the defining occurrence is similar
to a façade [2]. It also plays a role similar to an interface
in Java, exposing some functionality of the projection
while hiding the bits that are private to the projection.
Using the referencing occurrence is equivalent to using
the façade or interface. As do façades and interfaces,
defining and referencing occurrences provide the
possibility of automatically verifying at some level that
the projection is being used properly.

3. The Lighting Control System Case Study

The lighting control system to be built must conform to
the following problem statement, provided by the firm
constructing the building. The problem statement is:

The architect wishes to have a lighting control
system for a building. From the user’s perspective, the
system consists of switches and lighting units (lights)
associated with a room. When a switch is actuated, the
associated light or lights in the room must be turned on
or off.

The architect requires the use of up/down momentary
contact switches. A momentary contact switch must
cause its lighting units to be in the state indicated by the
switch’s motion: up turns the lights on if they are not
already on and down turns the lights off if they are not
already off.

The system must include a master control panel that
indicates the state of the lighting units in each room. If
the lights are on in a room, the indicator on the panel
shows green. If the lights are off, the indicator does not
glow. The state of the lights in any room can be
changed using the panel. Only certain people are
allowed to use the control panel; they must identify
themselves using a proximity badge (see below) that
confirms their identity.

Lighting units contain a unique identifier. The
system must keep track of where each lighting unit is
(which room it is associated with) and how long any
given lighting unit has been illuminated.

Certain lights are in secure rooms and are to be

actuated only by people with an appropriate level of
authorization. Users carry an identity card (a proximity
badge) that is read by a proximity reader either
embedded in or installed next to a switch. Lack of a
card means the person has the lowest level of
authorization possible. The level of security necessary
for a room is established using the master control panel.
The system must record who operated the lights in a
secured room. A person who lacks authorization may
not change the state of the lights.

The owner of the building requires the system to be
able to trace all light on or light off actions, printing the
trace in real time on a printer in the control room. If this
printer is not working correctly, an alarm of some kind
must be given.

The system must monitor the lighting units. If a
lighting unit is not in the correct state (e.g. off when it
should be on, or not responding at all), the system must
try to correct it. If the correction fails, the system must
indicate this fact by changing the indicator on the
master control panel of the room containing the failing
lighting unit to show red and logging the printer
discussed above. The detection of a lighting unit not
associated with any switch is to be logged on the printer
and indicated by illuminating a red indicator on the
master control panel reserved for this eventuality.

4. The Light Control Context Diagram

The problem statement and requirements leads us to
propose Figure 5 as the context diagram for the system.

This diagram mentions all the components of the
system listed in the problem statement and relates them to
the machine. Unfortunately, the diagram leaves out
several important parts of the problem. For example, the
relationship between people and badges cannot be
determined. The badge identifies the person to the system,
and establishes the person’s privileges. The privileges
determine whether the switch actuation is to be honored.

Light units

Machine

Switches Badge
Readers

Audit
Printer

Audit
Alarm

Master Control
Panel

Figure 5. An incomplete context diagram

Therefore, the person, the badge, and the privileges are
important parts of the problem and should be included in
the context diagram. After doing so, we have the diagram
shown in Figure 6.

5. Subproblem Diagrams
5.1. Initial Thoughts

There is nothing physical that relates a switch to the
lights it controls or to the logical room that contains the
lights. Equally, there is nothing physical that relates a
badge reader to a switch or to a room, or relates a badge
to a person. It seems that the notion of room is a unifying
concept fundamental to the problem, and perhaps the
problem could be decomposed along that dimension.

Actuating a switch is a request that the state of the
lights in a room be changed. From the user’s point of
view (and the switch’s as well), the lights in a room are
treated as a unit. It makes sense, therefore, to incorporate
the notion of room into the switch phenomena along with
the up and down phenomena. A method to map switches
and lights to rooms is required. Following this line of
reasoning further, it becomes clear that the badge and
privilege determination are separate from the switch
actuation. A badge is associated with a person and
privilege is associated with a person/room pair, meaning
we need another map. We thus end up with the lexical
domains People Privileges, Switches Rooms, and
Rooms Lights.

One of the fundamental problems, controlling the
lights, seems to be a commanded behavior problem.
People are commanding the lights using the switches and
the master panel. However, it would seem that the master
panel presents enough differences from use of the
‘normal’ switches to justify separating the two into
distinct subproblems, Switches & Lights and Master
Control Panel. We must next consider the Audit problem,
which responds to the parts of the problem statement

requiring verification that the lights are in the state that
they should be. The last problem is the maintenance of
the lexical domains.

Please note: to keep the diagrams simpler, phenomena
are not shown in the subproblem diagrams. As will be
noted later, they should be.

5.2. Switches & Lights Problem – Attempt One

Accepting this first analysis, a first-try problem frame
diagram for the switches subproblem is shown in Figure
7. Unfortunately, this problem frame diagram is far too
complex to be of use. It hides multiple requirements
under the name Control Lights, and it doesn’t fit any basic
problem frame. For these reasons and others, it is not
worth trying to complete the requirements arrows or
frame concern. We need to subdivide the problem further.

We start by connecting the switches to the lamps in the
rooms that they control. This is a commanded behavior
problem. The requirement, derived from the system
requirements and roughly stated, is if the user actuates a
switch, then the lights in the room(s) associated with the
toggle shall turn on, turn off, or remain as they are,
depending on the actuation. The problem diagram would
look something like the one shown in Figure 8.

We now turn our attention to the security aspects of the
problem. The requirement is, again roughly stated, if a
room is secured, then only people with the appropriate
permission can cause a state change in the lights. People
are identified by badges. This is a required behavior
problem; the diagram looks something like Figure 9.

The subproblem in Figure 9 suffers from the same flaw
as the one shown in Figure 7; it is overly complex. For
example, according to the information supplied, a badge
reader notes when a person enters and exits its detection
area. How the badges interact with the switches is not
clear. This behavior is not made explicit in the diagram,
and it is difficult to do so without adding secondary
requirements. We need to throw away the solutions in

Ligh units Audit
Printer

Audit
Alarm

Machine

Figure 7. Overly complex subproblem diagram

Rooms
Lights

Badges

C

C C C

Switches

C

Badge
Readers C

People

B

X

Switches
Rooms

People
Privileges

X

X

Control
Lights

Light units

Switches Badge
Readers

Audit
Printer

Audit
Alarm

Master Control
Panel

Machine Privileges

People Badges

Figure 6. The completed context diagram

Figure 8 and Figure 9, and further subdivide the problem.

5.3. Switches and Lights Problem – Attempt Two

We can reduce the complexity of the security problem
by introducing a model that uses badge reader events to
maintain a database of who is in a room. This model will
be the interface between the lights control problem and
the badge reader problem. The enter and exit events
generated by the badge reader give us the information we
need to build the model. A person is considered able to
control a room between enter and exit events. The model
is used by a second subproblem that verifies permissions
and enforces security. Following this route, we find we
have two problems, one to build the Person Room
model and one to use it. Figure 10 presents the first
subproblem – constructing the model.

Using the model would seem to be straightforward.
The required behavior problem would be similar to the
switches commanded behavior problem in Figure 8.
However, the resulting diagram would again suffer from
being overly complex, due to the interactions between the
associating the switches with rooms and then checking
security for those rooms. The too-complex problem

diagram is not shown.
To remove the complexity, the problem is broken into

subproblems where one subproblem uses the other as a
service. A projection domain is used to form the link.

The first subproblem, named Honor Switches and
shown in Figure 11, is the same as Figure 8 except that
the controlled domain is now a service, indicated by
reference to a projection domain named Control Lights,
defined in Figure 12. The phenomena passed to Control
Lights are shown on the diagrams; they are on(room) and
off(room). Note: Figure 11 uses a notational
convenience: names of projection domains are shown in
italics as well as by their definition-type letter (D or R).

Figure 12 shows the Enforce Security required behavior
problem that Honor Switches uses as a service. Enforce
Security accepts the on and off phenomena produced by
Honor Switches, then checks to see if the room is secure.
If the room is secured (in the Person Room model)
then verify that at least one person near a panel for the
room is permitted to control the lights for that room. If
permitted or if the room is not secured, then pass the
events along through a reference to a service Control units
in room (described below) through the projection domain

When a badge enters or
exits the reader’s range

and the reader is
associated with a room

and the
badge is

associated
with a person

satisfying the
requirement

then mark the person as
able to control the room

Badge
Reader C

Machine

Badge
Room X

Badge
Person X

Person
Room X

Maintain
Person Room

Model

Figure 10. Building the person room model

Machine

Figure 11. Lights control with security

Control
lights R

Switches

C

Switch
Room X

Honor
switches

When a switch is
actuated

and the
switch is

associated
with a
room

then the
security

subproblem
is told to

change the
state of the

lights

satisfying the
requirement

a

a: M!on(room)
 M!off(room)

Lights Audit
Printer

Audit
Alarm

Machine

Figure 9. A complicated security solution

Badges
Rooms

Badges

C

C C C

Switches

C

Badge
Readers C

People

B

X

Badges
People

People
Privileges

X

X

Enforce
Security

Machine

Figure 8. Basic lights control subproblem

Light units

C

Switches

C

Switch
Room X

Control
Lights

When a switch is
actuated

and the
switch is

associated
with a
room

then the
state of

each light
in the

room is
changes

as needed

satisfying the
requirement

When a switch in a
room is actuated

and the room is not
secure or a person is

in the room

and is
authorized in

that room

satisfying the
requirement

then the
operation is

permitted, Pass
it on.

Control
lights D

Machine

Units in
room R

Person
Privs X

Person
Room X

Enforce
Security

Figure 12. Enforce security

a: CL!on(room)
CL!off(room)

b: M!on(r, p)
 M!off(r,p)

a

b

Units in room, defined in Figure 13. The phenomena
passed along are of the form on(room, person) and
off(room, person).

We end with the diagram in Figure 13, Control units in
room where the Units in room projection domain is
defined. It is a commanded behavior problem, looking up
which lights are associated with the room and controlling
them appropriately. It informs the Maintain MP Indicators
subproblem (discussed in the next section) what it did
using the service defined by the Set MP indicator
projection domain.

5.4. The Master Control Panel

The Master Control Panel problem is decomposed into
three subproblems. The first, shown in Figure 14, is an
information display problem in which the indicators are
set appropriately and the audit trail is maintained. It
defines the projection domain Set MP indicator through
which it accepts on and off phenomena from the Control
units in room subproblem.

The second subproblem concerns controlling the lights
from the master panel. Shown in Figure 15, it is a

commanded behavior problem where pushing a button
associated with a room inverts the state of the lights in
that room. It uses the service represented by the
projection domain Units in room and defined in Figure 13
to actually control the lights.

The third subproblem is concerned with master panel
security, and is a required behavior problem. As this
subproblem is almost identical to the Enforce Security
problem presented in Figure 11, the subproblem will not
be further discussed here.

5.5. The Audit Subproblems

The Audit problem is decomposed into two
information display subproblems and one commanded
behavior subproblem. The first information display
subproblem, Audit lights unit shown in Figure 16, scans
the lights in each room to determine if they are in the
proper state. The fault indicator on the MP is lit via the
projection domain MP fault indicator if some unit is not
in the correct state.

The information display subproblem defining the MP
fault indicator projection domain is very similar to Figure

Machine

Figure 14. Master control panel

Indicators
on Panel C

Set MP
indicator

D

Room
Indicator X

Maintain MP
Indicators &

Audit

When the state of lights
in a room is set

the
indicator
for that
room is

determined

and turned
on or off,

while
recording

the state and
auditing

satisfying the
requirement

Room
Light state X

Audit R

Machine

Figure 15. Master control panel buttons

Units in room

R

MP
Buttons C

Button
Room X

MP Control
Buttons

When the state of lights
in a room is set

the room
controlled

by that
button is

determined

then the
lights are

inverted as
indicated by

the state

satisfying the
requirement

Room
Light state X

Machine

Figure 13. Control lights in room

Light
units C

Units in
room

D

Room
Light units X

Control units
in room

When lights in a room
are to be changed

and there
are

lighting
units in

the room

then the
lighting units

and MP
indicators are

set to the
appropriate

state

satisfying the
requirement

Set MP
indicator

R

a: UR!on(r, p)
 UR!off(r,p)

a

14, as is the subproblem defining the projection domain
Audit. These subproblems are not further discussed.

The job of the commanded behavior problem is to put
the lights into the state they should be in. It is identical to
the information display problem in Figure 16, except that
it would use the service represented by projection domain
would be Units in room, defined in Figure 13.

5.6. The Lexical Domains

Several lexical domains have been used in the above
diagrams. The creation and maintenance of each of these
is described by a simple workpieces problem frame. The
subproblems are all very similar and have solutions well
described in [6], so they won’t be further discussed.

6. Recomposition

Recomposition of the subproblems into a solution to
the original problem raises the following concerns.

6.1. Verify the Context

Each subproblem is an incomplete projection of the
context. It is interesting to note that the context diagram
itself appears to be a projection of something left unsaid,
as some designed domains in the problem diagrams (e.g.
the lexical domains) do not appear in the context diagram.

One could argue that any designed domain that appears
in more than one problem diagram should also appear in
the drawn context diagram. The rationale is that any
domain that appears in only one problem diagram
resolves some concern internal to that subproblem,
introduces no composition concerns, and is therefore not
part of the problem context. On the other hand, if a
designed domain appears in more than one subproblem, it
could easily introduce composition concerns. One is
therefore tempted to assert that designed domains that
resolve internal concerns and appear in two or more

projections should be included in the context diagram.

6.2. Verify Phenomena across Projection Domains

Directionality must be preserved on phenomena on the
interfaces of projection domains. This fact raises a
naming problem; different phenomena with the same
name cannot cross through the projection domain without
creating confusion on the other side. It is sufficient to
ensure that if the names of two phenomena entering a
projection domain are the same, then the phenomena have
the same meaning. Another solution would be to add a
phenomenon + interface map to the projection domain,
mapping phenomenon names from the controlled to
controlling interfaces.

The verification process must extend throughout the
virtual context (across all projection domains), ensuring
that controlled/used relationships are correct and that the
parameters of the phenomena are consistent.

6.3. Verify the Hidden Connections

The set of subproblems Audit Light Units, Maintain MP
Indicators and Control Lights in Room illustrate a potential
source of errors that seems hard to detect automatically.
Audit Light Units depends on the existence of the lexical
domain Room Light state, which is maintained by
Control Lights in Room and Maintain MP Indicators.
However, there is no easy way to verify that these
subproblems correctly use the lexical domain in this kind
of hidden connection between subproblems.

6.4. Distribution

During recomposition, one must decide whether all the
subproblem machines will compose to one machine, or if
the system is distributed in some way. In theory, the
machine in each subproblem could be a separate
computer. In practice, this will not happen, and in some
cases it cannot happen. For example, the existence of
shared state could force merging. Does this mean that if
two machines control the same symbolic phenomenon,
they must be combined? A similar question must be asked
about lexical domains to determine if they can be used in
a distributed fashion (as a distributed database).

As phenomena are ‘shared’, one could argue that
distribution is never allowed because it breaks the
simultaneity assumptions of problem frames analysis.
Ignored connection domains create similar difficulties.
For example, in comments to Charles Haley [7], Michael
Jackson says that “guards to be evaluated in one
subproblem could be added to events in another
subproblem. This solution method is particular to one
kind of composition and to a special (undistributed) kind

Machine

Figure 16. Audit light units

MP fault
indicator R

Room
Lights C

Room
Light state X

Audit Light
Units

Determine which rooms
have lights

and the
state the

lights
should be in

then verify
that the

lights are in
that state. If
not, signal a

fault

satisfying the
requirement

Light units

C

of problem environment.” This comment clearly states
that certain solutions force the analyst to use a non-
distributed implementation.

It would be very nice to have a better understanding of
and a way to specify the cases that force merging of the
machines. Indicating the simultaneity and concurrency
assumptions at an interface would help enormously.

Projection domains assist with determining whether
distribution is acceptable by specifying the interface
between a defining occurrence and its using occurrences.
Specifying the cardinality at these interfaces as described
in [3] would provide more information, as cardinalities
other than 1:1 imply at least some support for
concurrency and distribution.

6.5. Concurrency

The notion of trying to detect potential concurrency
problems during composition is intriguing.

Concurrency problems exist on at least two levels. The
first is rather large, exemplified by lexical domains and
models. There is an inherent concurrency problem be-
tween a machine that maintains the domain and a machine
that uses it. The problem manifests itself as inconsistent
or partial state. It would seem that this sort of problem is
amenable to solution, at least at the phenomena level, by
applying transaction semantics to the phenomena.

The second level can be illustrated by looking at the
example presented in this paper. It is perfectly permis-
sible to have multiple switches for the same room. The
switches and lights in a room may not be controlled by
the same computer, leading to potential race conditions as
the switches are actuated. Clearly the nature of a concur-
rency problem depends on how the system is distributed.

7. The Specific Concerns

Many concerns arise because of problem recomposi-
tion or conditions outside the analysis. These are the
specific concerns in [6]. Some are looked at here.

7.1. Initialization

Some of the initialization concerns might be:
What happens after a power fail?

What is the system supposed to do when power is
applied, either for the first time or after a power fail? Is
the building to remain dark, or are the lights restored to
their previous state? As an example of what might come
out of a discussion of this form, we might discover that
lighting units have a safety switch on them. If the switch
is at safety, when power is applied to the lighting unit, the
light is illuminated. This state is to be maintained until the

unit is told otherwise. The existence of a safety switch
and what it implies would certainly change several
problem diagrams, in particular the audit subproblems.
What about partial power failures, where the controller
loses power but the lights don’t?

There are several subquestions that might arise while
discussing this point. Does a partial power failure trigger
a safety concern? Can power be lost to parts of the con-
trol system, and if so what is to occur while power is lost
and when power is restored? The problem is complicated
by use of a distributed implementation, as different parts
of the system could be ‘off’ at any given time.
The audit process cannot run until system is initialized.

This is an example of initialization sequencing. The
audit system depends on having the various lexical
domains correctly initialized and the lights in a known
state. The point after which auditing can start must be
determined, and then a required behavior frame added to
express the requirement.
Lights added to a room may be in an incorrect state.

A maintenance engineer may repair or replace a
lighting unit while the system is running. Doing so raises
concurrency concerns (maintenance of the lexical
domains), correctness concerns (the newly installed light
is off when it should be on and vice versa), identities
concerns (movement of units from another room), etc.

7.2. Identities

There are many identities concerns. Most of them are
recognized by the inclusion of the lexical domains (the
maps). Some, however, cannot be satisfied with the
domains. For example, a switch might be added to the
system but not associated with any room. A lamp, set to
safety, might be added to the system but not associated
with a room. Badge readers present a similar problem.

Another identities concern that will cause changes to
the problem diagrams comes from the assumption that
switches are in rooms and badge readers are in rooms,
therefore someone in the room is actuating a switch. This
assertion is clearly incorrect if there are multiple badge
reader/switch pairs associated with a room. We can
confuse the identity of a person at the switch with a
person at another switch for the same room. The solution
is to map both badges and switches to a pair (room,
location) instead of to room. The diagram in Figure 10
would be changed to build a Person at Location model.
The diagram in Figure 10 would be changed to use the
Person at Location model. Finally, the diagram in Figure
11 would be changed to use a Switches
Rooms/Location map.

7.3. Interference

The decomposition creates several interference or
concurrency questions. For example, without care the
Audit machine can busily undo the Honor Switches
machine’s actions. Interactions between the audit infor-
mation display and audit setting the correct light state
could make panel indicators flash. If two switches control
the same room and one switch commands off while the
other commands on, individual lights could be left in
conflicting states. Inconsistent states while maintaining
the lexical domains is another source of errors.

7.4. Reliability

The reliability concern touches several of the other
concerns. For example, the safety question was discussed
above. How the system degrades in the face of power or
component failure is another.

8. Conclusions

The case study shows that projection domains help
with modeling one subproblem using another as a service.
Projection domains help keep the subproblems focused
while specifying how the subproblems interact. They
preserve completeness and directionality, providing a way
to verify that all phenomena used and controlled by the
defining subproblem are controlled and used by the
referencing subproblem(s), and vice versa. They better
encapsulate the service, as the phenomena visible at the
projection’s interface are defined by the defining
occurrence and not by the subproblem using the service.
They also provide a form of continuous composition by
specifying the interface between a defining occurrence
and its referencing occurrence(s).

Although projection domains resolve some composi-
tion problems, the case study showed that more remain.
Future work will focus on ensuring consistent use of lexi-
cal domains by multiple subproblems, verifying the
semantics of shared phenomena and their parameters, and
describing and verifying the concurrency properties of
domains and subproblems.

The case study brought several ‘use of problems
frames’ issues to the surface that would be helped by tool
support:
1. Recomposition of subproblems is non-trivial. Tool

support would help by assisting tracking of domains
through the various subproblems.

2. One should not take shortcuts with phenomena. One
cannot easily reason about the specific concerns
without the phenomena, which is why most of the
specific concerns are left unresolved. Unfortunately,
phenomena and how they are used changes rapidly

during analysis, encouraging the analyst to ‘wait until
the end’ to enter them into the diagrams, but the end
never comes. The maintenance of their consistency
across multiple problems is also difficult. Again, tool
support would be very helpful.

3. It is not always clear if and when designed domains
should be added to the context. As noted above, it
seems that they should be in the context if they
appear in more than one subproblem.

4. The specific concerns can point to changes needed in
the subproblems. The analysis is not complete until
they are all resolved, but there is no easy method to
verify their global resolution. A tool might support
some form of checklist, assisting the analyst in veri-
fying that the concerns have at least been considered.

Acknowledgements

The financial support of the Leverhulme Trust is
gratefully acknowledged. We also thank Michael Jackson
for his highly pertinent comments, criticisms, and help.

References

[1] T. Connolly, C. Begg, and A. Strachan, Database Systems:

A Practical Approach to Design, Implementation, and
Management, Second ed. Addison-Wesley, 1998.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[3] C.B. Haley, "Using Problem Frames With Distributed
Architectures: A Case for Cardinality on Interfaces,"
Second International Software Requirements to
Architectures Workshop (STRAW'03), International
Conference on Software Engineering (ICSE '03). Portland
OR USA, 9 May 2003.

[4] J.G. Hall and L. Rapanotti, Towards a Semantics of
Problem Frames, Technical Report 2003/05, Department
of Computing, The Open University, Milton Keynes UK,
2003.

[5] M. Jackson, Software Requirements & Specifications,
Addison Wesley, 1995.

[6] M. Jackson, Problem Frames, Addison Wesley, 2001.
[7] M. Jackson, "Personal Communication to Charles Haley:

Response to Questions about Problem Frames," 2003.
[8] S. Queins, G. Zimmermann, M. Becker, et al., "The Light

Control Case Study: Problem Description," Journal of
Universal Computer Science, vol. 6 no. 7, Jul 2000, pp.
586-596.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

